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ABSTRACT

A number of Holocene volcanoes in East Asia — Jeju, Ulleungdo, Tianchi, Longgang, Jingbohu, Erkeshan
and Wudalianchi — are located far (600-1500 km) from the nearest subduction zone. The origin of these
intraplate volcanoes remains unclear, and mechanisms proposed to explain their origin include plume ac-
tivity and subduction processes with or without slab fluid involvement. Here we evaluate the feasibility of
these mechanisms. We present an analysis of available geophysical data, including slab geometry models
and the full-waveform FWEA 18 tomography model, as well as statistical tests on a compilation of geochemi-
cal data. High-resolution tomography data provide no evidence for a deep-seated mantle plume. Instead,
the tomography shows that Tianchi, Longgang, Jingbohu, Erkeshan and Wudalianchi are located above
edges of the Pacific slab, which is stagnant near the 660 km discontinuity under East Asia. The tomography
also shows that Jeju is situated above a section of the Philippine Sea slab that has subducted to the 410 km
discontinuity. While the intraplate volcanoes are underlain by subducted slabs, their geochemical signa-
tures do not support melting via slab metasomatism typical of subduction zones. Instead, the Holocene in-
traplate volcanoes are alkaline and have trace element compositions comparable to those of ocean island
basalts. Given the absence of geophysical or geochemical evidence for plume activity or slab metasomatism,
we propose that volcanism has been generated by decompression melting associated with convective up-
wellings at the edges of the Pacific and Philippine Sea slabs. Tectonic reconstructions suggest that the Pa-
cific slab may have been stagnant in the mantle transition zone for millions of years, so we speculate that lo-
calised convection at Pacific slab edges was triggered by changes in Western Pacific subduction dynamics
during late Neogene—Quaternary time. The geophysical and geochemical data also suggest that Quaternary
rollback of the Philippine slab might be responsible for volcanism at Jeju, which is located at the leading
edge of the Philippine Sea slab.

1. Introduction

evidence of lithospheric extension or deep-seated plume activity
(Christiansen et al., 2002; Finn et al., 2005). To explain the origin of

The majority of volcanic activity on Earth is attributed to
processes involving subduction zone metasomatism, lithospheric ex-
tension, or mantle plume ascent (Canén-Tapia and Walker, 2004;
Perfit and Davidson, 2000). Some volcanoes, however, cannot be eas-
ily explained by these three mechanisms. There are examples of vol-
canoes in the proximity of subduction zones that seem unrelated to
mantle wedge metasomatism (Gvirtzman and Nur, 1999; Schellart,
2010; Verma, 2002), and some intraplate volcanoes show no obvious
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such volcanism in subduction zone settings, small-scale convective
processes have been invoked, involving, for example, slab edge ef-
fects (Govers and Wortel, 2005), slab tears (Lin et al., 2004;
Rosenbaum et al., 2008; Rosenbaum et al., 2018), and the interaction
of slabs with the mantle transition zone (Faccenna et al., 2010). In in-
traplate settings, the occurrence of ‘anomalous’ volcanism has been
ascribed to edge-driven convection associated with lithospheric steps
(Demidjuk et al., 2007; King and Anderson, 1998), which can be en-
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hanced by asthenospheric shear (Conrad et al., 2011; Davies and
Rawlinson, 2014). Anomalous intraplate volcanism has also been ex-
plained by the spontaneous formation of sub-lithospheric convection
below mature oceanic lithosphere (Ballmer et al., 2009) and slab-
related processes operating at great distances from the trench
(Faccenna et al., 2010; Mather et al., 2020; Strak and Schellart, 2014;
Tang et al., 2014; Yang and Faccenda, 2020).

Subduction of the Pacific and Philippine Sea plates has been respon-
sible for widespread Holocene arc volcanism along the margins of East
Asia (Fig. 1). However, a number of Holocene volcanoes, such as Jeju,
Ulleungdo, Tianchi, Longgang, Jingbohu, Erkeshan and Wudalianchi
(Fig. 1), are located far (600-1500 km) from the nearest subduction
zone. The origin of these volcanoes, which we herein refer to as the
‘East Asian Holocene intraplate volcanoes’, remains enigmatic. Previ-
ously proposed geodynamic mechanisms include the rise of deep-seated
mantle plumes (Kim et al., 1998; Kimura et al., 2018; Tatsumi et al.,
2004), subduction processes without slab dehydration (Brenna et al.,
2015; Chen et al., 2007; Tang et al., 2014; Zou et al., 2008; Zou et al.,
2003), and subduction processes involving slab dehydration (Chen et
al., 2017; Zhang et al., 2018; Zhao et al., 2007).

Relationships between deep slab subduction and some of the East
Asian Holocene intraplate volcanoes have been proposed on the basis
of seismic tomography data and numerical models (Tang et al., 2014;
Yang and Faccenda, 2020). However, a review of relevant geophysi-
cal and geochemical data, assessing the influence of subduction-
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related convective processes on all of the East Asian Holocene in-
traplate volcanoes, has, to date, not been undertaken. The aim of this
paper is to provide such a review. The recent release of the full-
waveform FWEA18 tomography model, which is one of the higher-
resolution tomography models available for East Asia (Tao et al.,
2018), provides an opportunity to (1) reassess previously proposed
hypotheses for the origin of the East Asian Holocene intraplate volca-
noes; (2) investigate the role of subduction-related convective
processes in the formation of the intraplate volcanoes; and (3) de-
velop a geodynamic model for the generation of these volcanoes.
Here, we first summarise geophysical data to identify relationships
between slab geometry and volcano distribution. We then perform a
statistical analysis on available geochemical data to identify group-
ings of geochemical composition. Finally, we test the hypothesis that
the spatial distribution and geochemical affinities of the East Asian
Holocene intraplate volcanoes are ultimately controlled by subduc-
tion-related convective processes that induce decompression melting
in the mantle.

2. Geological setting

Quaternary arc volcanism in East Asia has occurred in response to
the subduction of the Pacific and Philippine Sea plates (Fig. 1; Uto
and Tatsumi, 1996). The Pacific plate subducts beneath the Eurasian
and Philippine Sea plates, producing arc volcanism in the
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Fig. 1. Map showing the distribution of Holocene arc volcanoes (grey triangles), Holocene intraplate volcanoes (red and orange triangles) and regional plate
boundaries of Bird (2003) in East Asia. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this ar-

ticle.)
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Japan-Kurile and Izu-Bonin arcs, respectively (Fig. 1; Liu et al., 2017;
Sato and Amano, 1991). At the Japan Trench, the age of the subduct-
ing Pacific plate is Early Cretaceous (~130 Ma; Liu et al., 2017;
Miiller et al., 2008; Seton et al., 2012). The westernmost edge of the
Pacific slab, which is located in the mantle transition zone below east-
ern China, is of Late Cretaceous age (~90 Ma; Liu et al., 2017). Dur-
ing most of the Cenozoic, subduction of the Pacific slab was accompa-
nied by slab rollback, causing widespread overriding-plate extension
in East Asia (Schellart and Lister, 2005). Slab rollback ended during
the Miocene, and, since the Pliocene (~3.5 Ma), the overriding plate
(at the latitude of Japan) was subjected to contractional deformation
(Okada and Tkeda, 2012; Sato and Amano, 1991). The present-day
plate kinematics, which involve trench advance along the
Japan-Kuril and Izu-Bonin-Marianas trenches (Faccenna et al., 2018;
Heuret and Lallemand, 2005), are responsible for E-W compression
in mainland East Asia (Sato and Amano, 1991; Xu, 2001; Yu et al.,
2016).

The Philippine Sea plate subducts beneath the Eurasian plate in the
Nankai Trough and Ryukyu Trench (Fig. 1; Faccenna et al., 2018;
Nakajima and Hasegawa, 2007). Eastward retreat of the Ryukyu
Trench has been responsible for back-arc extension in the Okinawa
Trough (Fig. 1; Faccenna et al., 2018; Sibuet et al., 1998). The Philip-
pine Sea plate is made up of numerous Paleogene to present back-arc
basins, including the West Philippine and Shikoku-Parece Vela basins
(Fig. 1; Chamot-Rooke et al., 1987; Hall, 2002; Hickey-Vargas, 2005;
Hilde and Chao-Shing, 1984; Jolivet et al., 2018; Lallemand, 2016;
Okino et al., 1998). The Philippine Sea plate also contains arc frag-
ments, including the Cretaceous Amami Plateau, Oki-Daito Ridge and
Daito Ridge, and the Eocene Kyushu-Palau Ridge (Fig. 1; Hickey-
Vargas, 2005; Yamazaki et al., 2010).

The island of Jeju, the closest Holocene intraplate volcano to the
subduction zone (Fig. 1), comprises an emergent part of a basaltic vol-
canic field (Brenna et al., 2012b). Phreatomagmatic activity at Jeju
commenced at ~1.8 Ma (Brenna et al., 2012b; Sohn and Yoon, 2010;
Sohn and Park, 2004; Yi et al., 1998). Holocene volcanic rocks erupted
at Jeju include basalt, trachybasalt, basaltic andesite, basaltic tra-
chyandesite, trachyandesite and trachydacite (Brenna et al., 2012b).
To the northeast of Jeju, the eruption of 2.7 Ma basaltic agglomerates
marks the onset of Ulleungdo volcanism, which continued until the
mid-Holocene (Im et al., 2012). Ulleungdo volcanic rocks, charac-
terised by extreme alkali enrichments, include tephriphonolite, tra-
chyandesite, phonolite, and trachydacite (Brenna et al., 2014; Kim et
al., 2008; Kim et al., 1999).

Two groups of Holocene intraplate volcanoes occur in eastern
China. The first group includes the Jingbohu volcanic field, Tianchi
(part of the Changbaishan volcanic field), and the Longgang volcanic
field (Fig. 1). The Jingbohu volcanic field is composed of a volcanic
plateau and a number of cinder cones and small exposed lava flows
(Chen et al., 2007). Eruptions in the Jingbohu volcanic field occurred
5500-5200 years ago (Fan et al., 2003; Qicheng et al., 2006; Zou et
al., 2008), producing basanite, hawaiite, trachybasalt, tephrite,
phonotephrite, and foidite (Chen et al., 2007; Zou et al., 2008).
Tianchi, the youngest volcano in the Changbaishan volcanic field,
erupted 1000 years ago (Horn and Schmincke, 2000; Wei et al.,
2007). A generalised model of eruptive history at Tianchi includes the
eruption of early stage (~2.77-0.31 Ma), shield-forming basalt, a
later phase of stratocone-building trachyte production, and a final
episode of ignimbrite generation (Wang et al., 2003; Wei et al., 2007).
In addition to these eruptive phases, volcanism at Tianchi has pro-
duced hawaiite, mugearite and basaltic andesite to peralkaline rhyo-
lite (Chen et al., 2007). The Longgang volcanic field, in comparison,
is made up of a series of cinder cones, maars and lava flows (Chen et
al., 2007; Xu et al., 2003). Volcanism in the Longgang volcanic field,
which occurred 1600-1500 years ago (Fan et al., 2002; Zou et al.,
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2008), gave rise to basalt, hawaiite, mugearite, and basaltic andesite
(Chen et al., 2007).

The second group of Holocene intraplate volcanoes in eastern China
includes those at Erkeshan and Wudalianchi (Fig. 1). Historical records
suggest that Laoheishan and Huoshaoshan, two of the main cones in
the Wudalianchi volcanic field, erupted at 1719-1721 CE (Feng and
Whitford-Stark, 1986; Zou et al., 2003). Erkeshan is also considered to
be of Holocene age (e.g., Chen et al., 2007). Phonotephrite, basaltic tra-
chyandesite, tephriphonolite and trachyandesite make up eruptive se-
quences at both Erkeshan and Wudalianchi (Chen et al., 2007; Zhang et
al., 2016; Zou et al., 2003), but Wudalianchi also contains olivine leuci-
tite and leucite basanite (Chu et al., 2013). Based on field observations,
it has been suggested that Keluo (75 km NNW of Wudalianchi) was also
active during the Holocene (Global Volcanism Program, 2013), but
there is no supporting geochronological evidence (Meng et al., 2018).
Therefore, Keluo is not included in the list of Holocene volcanoes dis-
cussed in this study. A number of other East Asian Holocene intraplate
volcanoes are not considered in this study, either because of the paucity
of geochemical data (Ch'uga-ryong; Fig. 1), or because their origin has
been intimately linked to plume activity (Hainan volcanic field,
Udokan, Jom-Bolok, Khanui and Tariat; Xia et al., 2016; Yarmolyuk et
al., 2020; Yarmolyuk et al., 2015; Zou and Fan, 2010).

3. Geophysical evaluation of East Asian slab structure
3.1. Approach

We utilised five geophysical datasets to evaluate the current geome-
try of subducted slabs and to identify potential links between slab
geometry and intraplate volcanism in East Asia. The first dataset is the
ISC-EHB Bulletin (Weston et al., 2018), which contains relocated
earthquake hypocentres and phase arrival times from the International
Seismological Centre database. The second dataset is the Global Cen-
troid-Moment-Tensor (CMT) catalogue (Dziewonski et al., 1981;
Ekstrom et al., 2012), which comprises moment tensor data for earth-
quakes that occurred after 1976. The third geophysical data source is
the global Slab2 model (Hayes, 2018; Hayes et al., 2018), which utilises
a probabilistic non-linear fit to compute slab geometry models from a
data catalogue that includes receiver function, active-source seismic in-
terpretation, seismic tomography, and local and regional seismic data.
The fourth data source contains digital mid-slab maps of the Pacific
and Philippine Sea slabs (Wu et al., 2016), which were created using
GOCAD software from the interpretation of the MITPO8 P-wave to-
mography data (Li et al., 2008) and the USGS Centennial earthquake
catalogue seismic data (Engdahl, 2002). The mid-slab maps include
stagnant, aseismic parts of the slabs, which can be reconciled with plate
reconstructions (Wu et al., 2016). Thus, relative to the Slab2 model, the
mid-slab maps provide a more complete structure of the Pacific and
Philippine Sea slabs. The fifth dataset is the FWEA18 tomography
model (Tao et al., 2018), which is a full-waveform inversion of P- and
S-wave mantle velocities from 95 magnitude 5.3-6.9 earthquakes that
occurred between 2009 and 2016. Based on calculations of the precon-
ditioned Hessian-vector product, the resolution length of the FWEA18
model in the upper mantle and transition zone below eastern China is
estimated to be between 50 and 80 km, but is spatially variable de-
pending on source-receiver configurations (Tao et al., 2018). The over-
all geometry of the Pacific and Philippine Sea slabs shown by the
FWEA18 tomography model is similar to the slab geometry shown by
the MITPO8 (Li et al., 2008) and UU-PQ7 global tomography models
(Amaru, 2007; Hall and Spakman, 2015; van der Meer et al., 2018;
Supplementary Figs. S1 and S2, respectively), as well as regional mod-
els of seismic tomography (Chen et al., 2017; Liu et al., 2017; Tang et
al., 2014; Wei et al., 2012). To visualise the slab map and tomography
data, we used Scientific Colour Maps (Crameri, 2018a, 2018Db).
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3.2. ISC-EHB Bulletin, CMT and Slab2 data

ISC-EHB Bulletin data show abundant shallow and intermediate
seismicity along the length of the Pacific slab shown by the Slab2
model (Fig. 2A). Deep seismicity (> 400 km) is more sporadic, but two
notable clusters of deep earthquakes occur in association with the dip-
ping part of the Pacific slab. The largest cluster occurs east of Tianchi
and Jingbohu, between 129°E and 135°E and 40°N and 45°N (Fig. 2A).
According to the Slab2 model, these earthquakes correspond to the
westernmost edge of the dipping part of the Pacific slab at a depth of
560 km. P-axes of these earthquakes plunge 20-40° to the west and
northwest (Fig. 2B).

A second earthquake cluster occurs east of Ulleungdo (38.48°N,
134.64°E). The P-axes of these earthquakes plunge at shallow to mod-
erate angles to the west and southwest. Deep seismicity is absent in the
area immediately under the East Asian Holocene intraplate volcanoes.
According to the Slab2 model, the Pacific slab is subducting below Ulle-
ungdo, whereas the other East Asian Holocene intraplate volcanoes are
located beyond the edge of this slab (Fig. 2).

3.3. Three-dimensional slab models from seismic tomo graphy

According to the mid-slab maps (Wu et al., 2016), the subducted Pa-
cific slab extends at least 1700 km inland from the western Pacific sub-
duction zones (Fig. 3). The maps show that the subduction angle of the
Pacific slab is steeper in the north (north of 48°N) relative to the south
(Fig. 3), as indicated also by slab seismicity (Fig. 2). A roughly similar
slab geometry, extending at least 1800 km inland west of the Japan
Trench, has been inferred by other authors (Liu et al., 2017). The north-
ern part of the Philippine Sea slab, according to the mid-slab maps, ex-
tends some ~800 km to the northwest of the Ryukyu Trench, reaching
the 410 km discontinuity under the East China Sea (Fig. 3). Pownall et
al. (2017), using a different P-wave tomography model (Amaru, 2007),
also observed deep subduction of the Philippine Sea slab northwest of
the Ryukyu Trench. Jeju is located close to the leading edge of the

Earth-Science Reviews xxx (xxxx) 103624

Philippine Sea slab (Fig. 3). The other East Asian Holocene intraplate
volcanoes are located above areas where the mid-slab depth is >
500 km (Fig. 3).

3.4. FWEA tomography data

3.4.1. Horizontal depth slices

Horizontal depth slices of the FWEA18 S-wave model (Fig. 4) show
westward subduction of the Pacific slab under East Asia, which is ex-
pressed as a curvilinear, strong positive (> 2.5%) dVs anomaly. The Pa-
cific slab dVs anomaly reaches mainland East Asia at a depth of
~500 km and broadens as it approaches the 660 km discontinuity (Fig.
4C-D). Tianchi, Jingbohu, Longgang, Erkeshan and Wudalianchi are
located close to edges of the Pacific slab at a depth of 600 km (Fig. 4D).
The Philippine Sea slab is also identified by a positive dVs anomaly
(Fig. 4A, B), which is broadest at ~400 km (Fig. 4C). Jeju is located
above the leading edge of the deeper part of the Philippine Sea slab
(Fig. 4C), and Ulleungdo is also located on the edge of a positive dVs
anomaly (Fig. 4A-B). The latter anomaly is weaker than the Pacific
slab dVs anomaly, suggesting that it might represent part of the
younger and hotter Philippine Sea slab. An alternative full waveform
tomography model has also detected Philippine Sea slab, at similar
depths, north of Honshu (Simuté et al., 2016). Like the FWEA18 S-wave
depth slices, FWEA18 P-wave depth slices (Fig. 5) show interaction of
the Pacific and Philippine Sea slabs with the 660 and 410 km disconti-
nuities, respectively. The FWEA18 P-wave depth slices also highlight
the possible positioning of the East Asian Holocene volcanoes above
slab edges, which is most clearly shown in cross-sections (Figs. 6 and 7).

3.4.2. Vertical cross-sections

Vertical cross-sections of the FWEA18 S-wave tomography data
show that the Pacific slab does not significantly penetrate below the
660 km discontinuity (Fig. 6). For example, a cross-section below Wu-
dalianchi, oriented perpendicular to the strike of the Pacific slab, re-
veals abundant seismicity to a depth of ~300 km and the stagnation of
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Fig. 2. A) Map showing seismic data of the ISC-EHB Bulletin (coloured circles), regional plate boundaries of Bird (2003), depth contours of the Slab2 model
(Hayes, 2018; Hayes et al., 2018) and the distribution of Holocene arc (grey triangles) and intraplate volcanoes (red and orange triangles). B) Map showing >
75 km deep earthquakes included in the ISC-EHB Bulletin (coloured circles), P-axes of the CMT catalogue (coloured arrows), regional plate boundaries of Bird
(2003), depth contours of the Slab2 model (Hayes, 2018; Hayes et al., 2018) and the distribution of Holocene arc and intraplate volcanoes (grey and red/yel-
low triangles, respectively). The plate movement vectors are from Liu et al. (2017). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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the Pacific slab at the 660 km discontinuity (Fig. 6A). A nearly identical
slab structure is revealed by the P-wave data along the same section
(Fig. 7A). Both cross-sections indicate that Wudalianchi is situated near
the westernmost edge of the Pacific slab.

Cross-sections below Tianchi and Longgang show seismic activity
at greater depths (~600 km) and stagnation of the Pacific slab at the
660 km discontinuity (Figs. 6B and 7B). A prominent negative (i.e.,
slow) dVs anomaly beneath Longgang and Tianchi, in the transition
zone, may represent a gap in the slab (Fig. 6B), as inferred by Tang et
al. (2014). This gap is also visible in the P-wave tomography (Fig.
7B).

The Pacific slab structure below Ulleungdo is defined by Wa-
dati-Benioff zone seismicity to a depth of ~400 km (Figs. 6C and 7C).
Both the P and S-wave datasets show that the Pacific slab is stagnated
at the 660 km discontinuity. The S-wave section also shows a positive
dVs anomaly that rises from the main part of the Pacific slab below
Ulleungdo (Fig. 6C). Wu et al. (2016) have suggested that detached sec-
tions of Philippine Sea slab could be located in the mantle below Ulle-
ungdo.

Cross sections beneath Jeju show subduction of both the Pacific and
Philippine Sea slabs (Figs. 6D and 7D). In these sections, the Pacific slab
does not penetrate into the lower mantle, but instead appears to
thicken in the transition zone. Evidence of deflection of the Pacific slab
at a depth of ~410 km is supported by the flattening of slab seismicity
at this depth (Fig. 6D). Seismic activity associated with the Philippine

Sea slab is restricted to shallower depths. The Philippine Sea slab ap-
pears to have been subducted to the 410 km discontinuity (Figs. 6D and
7D). Cross-sections below Jeju that are oriented perpendicular to the
strike of the Philippine Sea slab show that Jeju islocated at the western
edge of the subducting Philippine Sea slab (Figs. 6E and 7E).

4. Geochemical insights into the origin of East Asian Holocene
intraplate volcanoes

4.1. Approach

A compilation of published geochemical data from the East Asian
Holocene intraplate volcanoes, as well as East Asian Holocene arc vol-
canoes (labelled “EA Arc” in Figs. 8-11), is presented in Supplemen-
tary Data File 1. After evaluating differences in alkali major element
compositions (Fig. 8), we examined TiO, and trace element data from
the intraplate volcanoes to qualitatively assess source component
contributions. Firstly, we constructed primitive mantle (PM) nor-
malised multielement diagrams of the average trace element compo-
sition of samples with SiO, < 57 wt% for each volcano (i.e., below
the andesite threshold to avoid the chemical effects of substantial
magma differentiation; Fig. 9). We then compiled bivariate plots of
TiO, and key trace element ratios (for samples with SiO; < 57 wt%;
Fig. 10) and compared these values to a compilation of ocean island
basalt (OIB) and volcanic arc data from the PetDB Database (www.
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earthchem.org/petdb). We used Nb/Y to track contributions of slab
melts because high field strength elements (HFSEs), such as Nb, can
be mobilised during slab melting (Hoffer et al., 2008). Enrichment of
light rare earth elements (LREEs) relative to heavy rare earth ele-
ments (HREEs), represented by La/Yb, is used to infer melting in the
presence of garnet (which is stable at depths >80 km; Moyen, 2009).
The ratios Ba/Th and Ba/La track dehydration fluid contribution
from the slab because Ba is a fluid-mobile large ion lithophile element
(LILE; Hawkesworth et al., 1997a; Sun and Stern, 2001). Th is a fluid-
immobile element whose mantle enrichment is affected by the addi-
tion of subducted sediments, which are rich in Th (Hawkesworth et
al., 1997a). Therefore, the Th/Ce ratio provides information about
the addition of sediment to melts (Hawkesworth et al., 1997a;
Hawkesworth et al., 1997b). Lastly, we constructed bivariate plots of
(1) Nb/Th vs. Zr/Nb and (2) Zr/Y vs. Nb/Y, because these HFSE ratios
are unaffected by secondary mobilisation and can be used to identify
recycled components (Condie, 2003, 2005).

To identify statistically significant groupings of trace element data
(normalised to normal mid-ocean ridge basalt; NMORB) from samples
with SiO, < 57 wt%, we used principal component analysis (PCA;

Fig. 11). PCA is a dimensionality reduction technique that simplifies a
dataset with a large number of variables (i.e., a dataset with a large
number of ‘dimensions’, in our case elemental compositions) by com-
puting new, uncorrelated variables that are linear combinations of
variables included in the original dataset (Jolliffe and Cadima, 2016;
Ringnér, 2008). These new variables are termed ‘principal compo-
nents’. The first principal component represents the direction that ac-
counts for the largest amount of variation, and the second principal
component is the orthogonal component that shows the largest varia-
tion (Abdi and Williams, 2010; Ringnér, 2008). Here, we used PCA to
reduce the dimensionality of NMORB-normalised trace element data,
which are traditionally plotted in a multielement ‘spider diagram’. By
performing PCA on trace element data (Fig. 11), differences in geo-
chemical patterns can be quantitatively assessed, thus allowing us to
identify similarities and differences between the normalised trace ele-
ment compositions of East Asian volcanoes. PCA is also useful be-
cause it allows visualisation of the trace element data on a single
Cartesian plane, rather than many (potentially overlapping) lines on a
multielement diagram. In order to avoid potential loading complica-
tions, we only included in the PCA samples that have data for Rb, Ba,
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Th, U, Nb, Ta, La, Ce, Pb, Pr, Sr, Nd, Sm, Zr, Hf, Eu, Tb, Dy, Er, Y, Yb
and Lu.

To obtain additional information about source contributions, we
assessed isotopic ratios, including !%3Nd/'%Nd, 208pb/204Pb,
207pb /204pD, 206ph /204Pb and 87Sr/80Sr (Fig. 12). The geochemical data
were processed and visualised in R (R Core Team, 2013). Packages
used include ggplot2 (Wickham, 2016) and those contained in the
‘tidyverse’ family (Wickham et al., 2019).

4.2. Geochemical variations in the East Asian Holocene volcanoes

Relative to the East Asian arc volcanoes, the intraplate volcanoes
contain significantly higher concentrations of alkalis (Fig. 8A), which
possibly arise from low degrees of partial melting of an enriched source.
Although both potassic and sodic rocks occur at the East Asian
Holocene intraplate volcanoes (Fig. 8B), Wudalianchi and Erkeshan are
considered potassic volcanoes, and Longgang, Jingbohu, Tianchi and
Jeju are considered sodic volcanoes (e.g., Choi et al., 2006; Sun et al.,
2017; Wang et al., 2017).

The average PM normalised trace element patterns of mafic compo-
sitions from the East Asian intraplate volcanoes are akin to those of
OIBs and significantly different from the pattern of the East Asian arc
basalts (Fig. 9). Relative to the arc basalts and normalised EMORB and
NMORB, intraplate volcanoes are enriched in incompatible trace ele-
ments. All of the intraplate volcanoes are enriched in LREEs relative to
HREEs, and they lack the prominent negative Nb and Ta anomalies
(and positive Pb and Sr anomalies) characteristic of subduction-related
rocks (which are shown by the East Asian arc basalts). Erkeshan and
Wudalianchi are the only intraplate volcanoes that have prominent
positive Ba anomalies. Taken together, the PM normalised multiele-
ment data provide strong evidence against the involvement of subduc-
tion-related fluids.

Bivariate diagrams of TiO, and trace element data (from samples
with SiOy < 57 wt%,; Fig. 10) further highlight the OIB-like chemical
composition of the East Asian Holocene intraplate volcanoes. For ex-
ample, at a given SiO, concentration, the TiO, concentrations of the in-
traplate volcanoes (median TiO, = 2.28 + 0.76 wt%; Fig. 10A) are
typically higher than those of the samples included in the PetDB arc
compilation. Indeed, the TiO, values of the intraplate volcanoes fall
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within the OIB field. A plot of Th (ppm) vs. the Ba/Th ratio (Fig. 10B)
shows that the intraplate volcanoes generally have lower Ba/Th values
than the arc rocks. Exceptions to this are Erkeshan and Wudalianchi,
whose elevated Ba/Th values (up to 341) are comparable to those in-
cluded in the compilation of global arc rocks. The Th (ppm) values of
the East Asian intraplate volcanoes are similar to those of OIBs. La/Yb
and Nb/Y values (Fig. 10C) of the intraplate volcanoes are higher than
those of the arc volcanoes, and, like the other trace element ratio data,
the intraplate La/Yb and Nb/Y values overlap with those included in
the OIB compilation. Ulleungdo contains higher Nb/Y values than the
other intraplate volcanoes, but these values are similar to some OIBs.
The Th/Ce and Ba/La values of the intraplate volcanoes (Fig. 10D) are
typically lower than those of the arc volcanoes. The OIB-like geochem-
ical affinities of the East Asian Holocene intraplate volcanoes are also
demonstrated by bivariate plots of Nb/Th vs. Zr/Nb (Fig. 10E) and Zr/
Y vs. Nb/Y (Fig. 10F).

4.3. Statistical significance of trace element variations

The PCA data for samples with Si0, < 57 wt% show that princi-
pal component one (PC1) and principal component 2 (PC2) account
for 59.6% and 23.4% of the observed variance, respectively (Fig.
11A). The largest contributors to PC1 are Pr, Ce, La and Nd (Fig. 11B),
whereas the largest contributors to PC2 are Er, Y, Dy, Yb and Lu (Fig.
11C). Correlations between the individual elements and the calcu-
lated principal component (PC; Fig. 11D) are also represented by vec-
tors (Fig. 11A), where the length of the vector is directly proportional
to the strength of the correlation between the individual element and
the respective PC. For PC1, positive correlations are greatest with Pr,

Ce, La and Nd , whereas Lu, Yb and Er are negatively correlated. For
PC2, the strongest positive correlations are with Er, Y, Dy, Yb and Lu,
whereas Sr, Ba, Pb and Rb are negatively correlated. Most of the East
Asian arc data plot in the upper left quadrant of the PCA plot (Fig.
11A), indicating that these rocks are enriched in heavy REE relative
to the intraplate rocks. Jeju is the only intraplate volcano that has
data plotting in the East Asian arc field. Erkeshan and Wudalianchi
plot exclusively in the lower right quadrant, indicating higher con-
centrations of Sr, Ba, Pb, Rb, Pr, Ce, La and Nd (i.e., LILEs and LREE)
relative to the other East Asian volcanoes.

4.4. Isotope variations

A bivariate plot of 87Sr/86Sr vs. 143Nd/1“Nd (Fig. 12A) shows that
most of the intraplate volcanoes occur on a mixing line between de-
pleted (DMM/FOZO) and enriched components (EM1/LoMu).
143Nd/14Nd is lowest and 8Sr/86Sr highest at Erkeshan and Wu-
dalianchi, whereas Jingbohu and Jeju plot at the other end of the lin-
ear trend. Bivariate plots of 87Sr/80Sr vs. 208pb/20%Pb (Fig. 12B),
87Sr/86Sr vs. 207Pb/204Pb (Fig. 12C) and 87Sr/86Sr vs. 200Pb/204Pb (Fig.
12D) suggest that the unradiogenic isotope compositions of Wu-
dalianchi and Erkeshan are similar to those of the EM1/LoMu reser-
voirs (e.g., Chen et al., 2007; Sun et al., 2017; Wang et al., 2017). In
Jeju and Ulleungdo samples, the 2%Pb/20Pb values are higher than
those of the other intraplate volcanoes (Fig. 12B). The 2Pb/2%Pb
(Fig. 12C) and 2%Pb/204Pb values of Jeju (Fig. 12D) are also more ra-
diogenic than the other intraplate volcanoes. Overall, these radi-
ogenic Pb isotope compositions indicate the inclusion of an EM2 com-
ponent in the source of Jeju (e.g., Kim et al., 2019). Although the
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(B) NaO (wt%) vs. K,O (wt%). The East Asian Holocene intraplate volcanoes are, overall, more alkaline than the arc volcanoes (Fig. 8A). Fig. 8B shows that
both alkaline and sodic rocks have been erupted in East Asia. Erkeshan and Wudalianchi have only erupted potassic rocks (Fig. 8B). Ulleungdo and Tianchi
have erupted a combination of potassic and sodic rocks, and the remaining East Asian volcanoes have erupted sodic rocks. Data were compiled from Basu et al.,
1991; Bindeman et al., 2004; Brenna et al., 2012b; Brenna et al., 2014; Chen et al., 2007; Chu et al., 2013; Hoang et al., 2013; Kita et al., 2012; Kita et al., 2001;
Miyoshi et al., 2008; Shibata et al., 2014; Sugimoto et al., 2006; Yokoyama et al., 2006; Zhang et al., 2016; Zhang et al., 1995; Zou et al., 2008; Zou et al., 2003.

207pb /204Pb composition of Ulleungdo (Fig. 12C) is more radiogenic
than Erkeshan and Wudalianchi, it is comparable to Tianchi, Long-
gang and Jingbohu. Bivariate plots of 2%Pb/2%Pb vs. 207Pb/204Pb (Fig.
12E) and %3Nd/1*Nd vs. 208Pb/204Pb (Fig. 12F) further highlight the
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Fig. 9. Average PM normalised multielement compositions of the East
Asian Holocene intraplate volcanoes for samples with SiO; < 57 wt%. PM
normalised OIB, enriched mid-ocean ridge basalt (EMORB) and NMORB
compositions (Sun and McDonough, 1989), as well as representative sam-
ples of main arc basalts (Kuritani et al., 2016), are displayed for compari-
son. Overall, the East Asian Holocene intraplate volcanoes display OIB-like
trace element characteristics.

less radiogenic signature of Erkeshan and Wudalianchi relative to the
other intraplate volcanoes, particularly Jeju and Ulleungdo.

5. Discussion
5.1. Previously proposed melting mechanisms

Holocene volcanism in East Asia has been previously explained by
plume activity (Kim et al., 1998; Kimura et al., 2018; Tatsumi et al.,
2004), subduction processes involving slab dehydration (Chen et al.,
2017; Zhang et al., 2018; Zhao et al., 2007), and subduction processes
without slab dehydration (Brenna et al., 2015; Chen et al., 2007; Tang
etal., 2014; Zou et al., 2008; Zou et al., 2003). Plume-related volcanism
is typically characterised by broad topographic swells, 3He/*He values
of 10-30 Ry (Graham et al., 1998), and finger-like low dVp anomalies
in seismic tomography (Nolet et al., 2007) with origins potentially as
deep as the core-mantle boundary (Campbell, 2007; Nelson and Grand,
2018). The range of 3He/*He values (5.5-7 R,) in the East Asian
Holocene intraplate volcanoes is more akin to MORB (Chen et al.,
2007), the volcanoes do not correspond to slow seismic anomalies in the
lower mantle (Chen et al., 2007; Montelli et al., 2004; Tang et al.,
2014), and the volume of basalt erupted is relatively small (Chen et al.,
2007; Tang et al., 2014). Therefore, a mantle plume origin for these
volcanoes seems unlikely.

The East Asian Holocene intraplate volcanoes are located above
subducted slabs (Figs. 3-7), but the depth of the slabs below these vol-
canoes (>400 km) is considerably greater than typical depths
(90-150 km) associated with subduction-related volcanism (Schmidt
and Poli, 1998). In addition, the volcanic rocks do not display typical
subduction-related geochemical characteristics, such as calc-alkaline
major element compositions, positive anomalies of fluid-mobile LILEs,
and negative anomalies of fluid-immobile HFSEs (Elliott, 2003;
McCulloch and Gamble, 1991). Instead, the intraplate volcanoes have
OIB-like PM normalised trace element compositions (Fig. 9).

Trace element ratio data provide further evidence that melting as-
sociated with the intraplate volcanoes was not generated by typical
subduction processes. For example, the median Th/Ce value of all in-
traplate samples with SiO, < 57 wt% is 0.07, which is OIB-like and
significantly lower than the values of arc rocks that have received
contributions of subducted sediments (Th/Ce up to 0.35;
Hawkesworth et al., 1997a). Ba/La values of the intraplate volcanoes
are also lower than Ba/La values of arc rocks produced by metaso-
matic processes (Fig. 10D; e.g., Sun and Stern, 2001). Although only
qualitative, these observations are in line with previous studies that
have suggested that sediments or fluids associated with recent sub-
duction processes do not contribute to East Asian intraplate volcan-
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ism (Brenna et al., 2015; Chen et al., 2007; Zou et al., 2008; Zou et al.,
2003). The Ba/Th values (Fig. 10B) of Jeju, Ulleungdo, Jingbohu,
Tianchi and Longgang are also comparable to those of MORB and OIB
(Ba/Th = 50-200; Bourdon et al., 2003). Ba/Th values of Erkeshan
and Wudalianchi plot within the ‘subduction’ field (Ba/
Th = 200-1200; Bourdon et al., 2003), but these elevated values are
likely associated with the long-term storage of ancient sediments in
the mantle transition zone, which were added during a phase of sub-
duction at ca. 2.2 Ga (Wang et al., 2017). The long-term isolation in
the mantle transition zone of these ancient low-p sediments, domi-
nated by K-hollandite (which retains K, Rb, Ba and Pb; Wang et al.,
2017), may also be responsible for the presence of an EM1/LoMu-like
reservoir under East Asia (Sun et al., 2014; Wang et al., 2017). In-
deed, Jingbohu, Tianchi, Longgang, Erkeshan and Wudalianchi ap-
pear to be the products of mixing between a depleted endmember
(subcontinental lithospheric mantle for the potassic volcanoes and as-
thenospheric mantle for the sodic volcanoes; Wang et al., 2017;
Zhang et al., 2018 and authors therein) and the EM1/LoMu reservoir
associated with the mantle transition zone (Fig. 12). Mixing of a de-
pleted component and an EM2 component of asthenospheric origin
has been invoked to explain Jeju isotope compositions (Fig. 12; Choi
et al., 2014; Choi et al., 2006), and the isotope compositions of Ulle-
ungdo likely arise from mixing of asthenospheric DMM, EM1 and
EM2 components (Choi et al., 2014; Choi et al., 2006). Therefore, the
isotope compositions of the East Asian Holocene intraplate volcanoes
appear to reflect mixtures of mostly asthenospheric mantle sources.
Evidence of excess ?2°Th and other observations from geochemical
data (including low 2%Pb/2%4Pb values, low Sr/Th values, low U/Th
values, and an absence of positive K anomalies) provide further support
for the lack of recent inputs of slab fluid and sediments into the East
Asian Holocene intraplate volcanoes (Brenna et al., 2015; Chen et al.,
2007; Sun et al., 2017; Zou et al., 2008; Zou et al., 2003). Some authors
have suggested, based on the occurrence of negative §2°Mg values, that
mainland East Asian intraplate volcanoes originated from mantle
sources that were modified by Pacific slab melts (Li et al., 2017; Yang et
al., 2012; Zhang et al., 2018). However, these §*°Mg anomalies have
been explained by the presence of recycled carbonate-bearing sedi-
ments and carbonated eclogite, added during ancient subduction
events, in the East Asian mantle (Sun et al., 2017; Wang et al., 2017).
Relationships betw een §*°Mg, Sr-Nd-Pb isotope and trace element data
demonstrate the occurrence of recycled rutile-bearing eclogite and car-
bonate components in the Jeju mantle source, as do they preclude sig-
nificant contributions of subducted sediments (Kim et al., 2019). Deliv-
ery of enriched crustal trace element and isotope signatures, character-
istic of OIBs globally, to the source of East Asian Cenozoic continental
intraplate basalts has also been linked to the Mesozoic rollback of the
Paleo-Pacific slab, which induced rutile dehydration at post-arc depths
(Xu and Zheng, 2017; Zheng et al., 2020). Bivariate plots of Nb/Th vs.
Zr/Nb and Zr/Y vs. Nb/Y (Fig. 10E-F) further support the inclusion of
recycled crust in the East Asian mantle. Positive correlations between 1/
Os and '¥0s/180s (Chu et al., 2013), together with constraints from
geochemical modelling (McGee et al., 2015) and correlations of various
geochemical compositions (Brenna et al., 2012a; Kimura et al., 2018;
Kuritani et al., 2011; Wang et al., 2017; Zou et al., 2003), indicate that
crustal contamination has not affected the geochemical composition of
most East Asian Holocene intraplate basalts. Therefore, the geochemi-
cal evidence suggests that recent slab metasomatism has not signifi-
cantly contributed to the composition and formation of the East Asian
Holocene intraplate volcanoes. Alternatively, based on the OIB-like,
LREE-enriched compositions of the intraplate volcanoes (which have
been interpreted to signal melting of deep, garnet-bearing sources;
Chen et al., 2007; Chu et al., 2013; Meng et al., 2018) and the proxim-
ity of the intraplate volcanoes to deep slab edges, it is possible that con-
vection of enriched asthenospheric mantle at slab edges has led to de-
compression melting and the formation of these volcanoes.
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light the OIB-like geochemical compositions of the East Asian Holocene intraplate volcanoes. (For interpretation of the references to colour in this figure leg-

end, the reader is referred to the web version of this article.)
5.2. Geodynamic controls on intraplate volcanism in East Asia

Most of the East Asian Holocene intraplate volcanoes are located
close to and above the deep edges of the Pacific and Philippine Sea
slabs, as indicated by the different geophysical datasets analysed in our
study (Figs. 3-7). Mantle flow triggered by slab-mantle interaction
and/or dewatering of a stagnant slab can potentially generate melting
and associated alkaline volcanism (Faccenna et al., 2010). In the case
of the East Asian Holocene intraplate volcanoes, however, the geo-
chemical data do not support dewatering or fluid metasomatism. Fur-
thermore, the Pacific slab may have been stagnant in the transition
zone below East Asia for tens of millions of years (Liu et al., 2017),
meaning that the cause of convective flow along the Pacific slab mar-
gin cannot be easily reconciled with the model of Faccenna et al.
(2010), which predicts maximum poloidal mantle flow when the slab
approaches the 660 km discontinuity. It is also difficult to apply this

model to the Philippine Sea slab because this slab has not yet reached
the 660 km discontinuity (Figs. 3-7).

It appears, therefore, that the origin of intraplate volcanism in
East Asia should also be considered in the context of regional-scale
tectonic events, which might have triggered a change in the upper
mantle convection regime (i.e., on top of the 660 km discontinuity).
The onset of volcanism at Jeju, at ~1.7 Ma, coincides with a plate
kinematic change expressed by (1) Philippine Sea slab rollback
(Brenna et al., 2015, (2) a shift from northerly Philippine Sea plate
motion to WNW-oriented migration (Wu et al., 2016); and (3) the on-
set of coupling between the Pacific and Caroline plates (Wu et al.,
2016). Changes in the absolute plate motion of the Pacific plate oc-
curred at ~2.6 Ma and ~0.78 Ma, involving rotation of the Pacific
plate in East Asia and faster westward plate motion (Harbert and Cox,
1989; Wessel and Kroenke, 2000), which overlapped with a period of
increasing Pacific slab pull force (Faccenna et al., 2012) and the onset
of compressional deformation at the latitude of Japan (Okada and
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Tkeda, 2012; Sato and Amano, 1991). Although it is important to con-
sider the effects of erosion on the preservation of older volcanoes, it
appears that East Asian intraplate volcanic activity became more
prevalent during the late Neogene and Quaternary (Fig. 13; Chen et
al., 2007; Li et al., 2017; Meng et al., 2018). Given that the Pacific
slab has been in the mantle transition zone since at least 10-20 Ma
(Liu et al., 2017), we speculate that changes in the western Pacific
subduction dynamics triggered mantle flow reorganisation, which in-
volved convective mantle flow at the leading slab edge of the Pacific
slab, that generated intraplate volcanism via decompression melting
(Fig. 14). A similar mechanism has recently been proposed to explain
the origin of non-age-progressive Cenozoic intraplate volcanism in
eastern Australia (Mather et al., 2020). This volcanism, according to
Mather et al. (2020), was generated by melting of volatile-rich mantle
material in response to enhanced slab flux and the perturbation of the
mantle transition zone by subducted slabs. Given that the convergent
margin in East Asia has been controlled predominantly by slab mo-
tion (rather than motion of the upper plate; Heuret and Lallemand,
2005), an increase of slab flux caused by regional kinematic changes
could explain the dramatic increase in eruption frequency during the
Quaternary (Fig. 13).

Our proposed mechanism for the origin of intraplate volcanism in
East Asia is supported by analogue models (Strak and Schellart, 2014),
which demonstrated that subduction-induced poloidal flow in the
mantle wedge of a retreating system is greatest when a slab tip ap-
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proaches depths of 450-500 km (thus explaining Jeju volcanism in re-
sponse to Philippine Sea slab rollback). These analogue models have
also shown that the advance of a subducted slab over the 660 km dis-
continuity can generate quasi-toroidal flow around lateral slab edges,
as well as poloidal flow at the leading slab edge (Strak and Schellart,
2014). If so, widespread volcanism may occur along the perimeter of
the Pacific and Philippine Sea slabs, raising the question why the occur-
rence of the intraplate volcanoes is rather sporadic. For the case of the
Philippine Sea slab, it is possible that isolated decompression melting at
sub-lithospheric depths was only enabled in Jeju, because it is located
above the edge of the Philippine Sea slab (Figs. 3-7) and in an area that
is bounded by thick lithospheric structures that could promote edge-
driven convection (Song et al., 2018). For the case of the Pacific slab,
indeed, many additional (Pleistocene) intraplate volcanoes are distrib-
uted along the western slab edge (Fig. 3). These Pleistocene intraplate
volcanoes have OIB-like geochemical compositions comparable to
those of their Holocene counterparts, lacking evidence for the incorpo-
ration of recent subduction components (e.g., Chen et al., 2007). Be-
cause the western edge of the Pacific slab was already in the mantle
transition zone during Pleistocene time (Liu et al., 2017), it is possible
that the Pleistocene volcanoes were also produced by slab edge convec-
tion (and associated decompression) caused by changes of subduction
dynamics.

One volcano that cannot be easily explained by our proposed model
is Ulleungdo, which is located several hundred kilometres away from
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Fig. 12. Bivariate plots of key isotope data from intraplate volcanoes in East Asia. Samples of all SiO, concentration are shown in these plots. Jeju dis-
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Fig. 13. Histogram showing the occurrence of East Asian basalts younger
than 110 Ma (modified from Li et al., 2017).

the Pacific slab edge (Figs. 3-7). The leading edge of the Philippine Sea
slab appears to occur south of Ulleungdo (Figs. 2 and 3; Simuté et al.,
2016). Fast seismic anomalies below the Sea of Japan, similar to the
fast S-wave anomaly below Ulleungdo, possibly represent detached
fragments of Philippine Sea slab (Wu et al., 2016; Fig. 6C), which might
have played a role in triggering volcanism with a component of slab
melt metasomatism (as suggested by high Nb/Y values; Fig. 11C).

13

However, given that the potential detached slab shown by the FWEA18
tomography data is not very well resolved, the origin of Ulleungdo re-
mains an open question.

6. Conclusion

Geophysical data suggest that the East Asian Holocene intraplate
volcanoes are mostly located above deep edges of the Pacific and
Philippine Sea slabs. Although the intraplate volcanoes are located
above slabs, their geochemical compositions reflect minimal recent
contributions of subduction fluids or sediments. Instead, the geochemi-
cal data suggest that ancient, recycled crust and sediments are included
in the source of the intraplate volcanoes. Variations in isotope composi-
tion are interpreted to reflect mixing of mostly asthenospheric mantle
sources. Based on these geophysical and geochemical data, we suggest
that the East Asian Holocene intraplate volcanoes formed above slab
edges via convective processes, involving enriched asthenospheric man-
tle, that may have triggered decompression melting. We also speculate
that slab-edge convection could have been triggered by regional-scale
tectonism associated with changes in the kinematics of the Pacific and
Philippine Sea plates.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.earscirev.2021.103624.
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vection along the edge of the Pacific slab.
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